Особенности хромирования

Здесь рассказывается о:
- применяемые при хромировании аноды
- электролиты различной концентрации и их особенности
- методы повышения равномерности осаждения хрома при хромировании
- расположение деталей и анодов при хромировании
- применение при хромировании защитных катодов
- применение при хромировании защитных экранов

Важной особенностью хромирования является более легкое выделение водорода на катоде, чем хрома. Водород начинает выделяться при более положительном потенциале, чем хром, и выход по току при хромировании намного (в три - пять раз) меньше, чем при осаждении остальных металлов.

Показатели процесса и качества покрытия при хромировании в значительно большей степени зависят от режима хромирования (плотности тока и температуры электролита), чем при других гальванических процессах покрытия металлом. (подробнее в статье Хромирование)

Рассеивающая и кроющая способности электролитов для хромирования в отличие от других гальванических процессов низки, что заставляет применять при хромировании особые приемы для повышения равномерности покрытия. Низкая кроющая способность связана с сравнительно высокой минимальной плотностью тока, при которой начинается выделение хрома.

В ваннах для хромирования применяются только нерастворимые аноды, что требует периодического пополнения убыли хромовой кислоты путем ее непосредственного введения в электролит в необходимых количествах.

На нерастворимом свинцовом аноде при электролизе происходит выделение кислорода и активное окисление трехвалентного хрома до шестивалентного. Часть кислорода, выделившегося в процессе электролиза, окисляет поверхность свинца с образованием темно-коричневой двуокиси свинца, хорошо проводящей электрический ток. Аноды, покрытые двуокисью свинца, практически нерастворимы при хромировании в электролите с добавкой сульфат аниона. Слой двуокиси свинца, повышая перенапряжение выделения кислорода, ускоряет окисление трехвалентного хрома в шестивалентный.

Хромируемые детали к началу электролиза должны быть нагреты до температуры электролита. Мелкие детали, загруженные в ванну в небольшом количестве, нагреваются быстро, большие массивные детали нагреваются медленно и охлаждают ванну.

При хромировании рельефных деталей рекомендуется в начале электролиза произвести "толчок" тока, т. е. электролиз начинают при силе тока примерно вдвое больше, чем следует по расчету, а спустя 1-2 мин значение ее постепенно уменьшают до расчетного. Благодаря толчку тока удается осадить хром на углубленных участках детали и облегчается начало выделения хрома на чугуне.

Перерывы подачи тока в процессе хромирования нежелательны, так как при повторном наращивании возможно отслаивание хрома.

Сульфатные электролиты.

Концентрация хромового ангидрида в электролитах с добавкой серной кислоты может изменяться в широких пределах (от 100 до 500г/л). Для получения покрытия хорошего качества надо, чтобы отношение концентраций СrО3:H2SO4 в электролите поддерживалось постоянным на уровне около 100. Значительное понижение концентрации серной кислоты в электролите вызывает отложение серых недоброкачественных осадков хрома, увеличение ее концентрации - отложение мелкозернистых блестящих осадков.

Увеличение концентрации хромового ангидрида повышает электропроводность раствора. Изменение концентрации серной кислоты в указанных пределах практически не оказывает влияния на электропроводность раствора.

Рассеивающая способность заметно возрастает в электролитах со сниженной концентрацией хромового ангидрида, и это особенно проявляется при хромировании в электролитах деталей с развитым рельефом.

Осаждение на катоде серых матовых хромированных покрытий происходит при низких температурах электролиза (35°С и ниже) и любой плотности тока. Покрытия, полученные при этих режимах электролиза в сульфатных ваннах, отличаются высокой хрупкостью и слабым сцеплением.

Блестящие хромированные покрытия получаются при средних температурах электролита 45-65 °С в широком диапазоне плотностей тока. Осаждение блестящего хрома возможно и при более высоких температурах электролита из мало-концентрированных растворов при высоких плотностях тока. Блестящий хром имеет наиболее высокую твердость, хорошее сцепление с основным металлом и относительно небольшую хрупкость.

Осадки молочного хрома получают при высоких температурах электролита (выше 65 °С) и при плотностях тока 25-30 А/дм2. Покрытия молочного хрома по сравнению с другими имеют низкую твердость, значительную пластичность, меньшую пористость и благодаря этому более высокую защитную способность (подробнее в статье Хромирование).

Выбор концентрации электролита осуществляется в соответствии с характером покрытия и конфигурацией деталей.

Концентрированные электролиты - содержат 350-450г/л хромового ангидрида. Они обладают сравнительно низким выходом по току и плохой рассеивающей способностью. Вместе с тем концентрированные электролиты отличаются относительно хорошей кроющей способностью, что позволяет применять их при декоративном хромировании деталей сложной формы. Благодаря низкому омическому сопротивлению, возможно устанавливать значительные расстояния (180-200 мм) между электродами при ограниченном напряжении источника тока, а сниженные плотности тока позволяют покрывать одновременно большие катодные площади.

Электролиты с низкой концентрацией хромовой кислоты (мало-концентрированные) - содержат 100-150г/л хромового ангидрида. Режим хромирования: 50-120 А/дм2 и 55-60°С. Противокоррозионное плотное покрытие получается при температуре электролита 65-70 °С и плотности тока 25-30 А/дм2; скорость наращивания хрома при этом составляет 13-15 мкм/ч.

Хромовые покрытия, полученные из мало-концентрированных электролитов, имеют высокую твердость и износостойкость. В мало-концентрированных электролитах меньше разрушается изоляция на деталях и подвесных приспособлениях.

Эти электролиты применяются для повышения износостойкости трущихся деталей и инструментов, восстановления изношенных или забракованных по размерам деталей, а также для защитного и защитно-декоративного хромирования.

Недостатком мало-концентрированных электролитов считается потребность в более частой корректировке электролита добавлением хромового ангидрида.

Методы повышения равномерности покрытия при хромировании

Основным в достижении равномерности покрытия является борьба с краевым эффектом, т. е. с концентрацией тока на краях и выступах детали. Причина краевого эффекта в том, что к выступам и краям хромируемой детали, ток идет не только по кратчайшему пути, но и дополнительно через весь объем электролита.

Чем больше межэлектродное расстояние, тем большая часть тока отвлекается в объем электролита и тем выше неравномерность покрытия из-за краевого эффекта. Краевой эффект на катоде, занимающем все поперечное сечение электролита, отсутствует, если стенки и дно ванны не проводят электрический ток.

Для устранения или снижения краевого эффекта на хромируемой поверхности применяются два основных способа: увеличение сопротивления рассеиванию тока в объеме электролита вплоть до полной электрической изоляции рабочего электролита в межэлектродном пространстве от остального электролита в ванне, и отвлечение излишнего тока от краев хромируемой поверхности. Эти задачи решаются рациональным расположением хромируемых деталей и анодов в ванне, применением защитных катодов и защитных экранов.

Расположение деталей и анодов в ванне. При одинаковом межэлектродном расстоянии на всех участках хромируемой поверхности соотношение между током, протекающим по кратчайшему расстоянию между катодом и анодом (создающим равномерное покрытие), и током, распространяющимся во всем объеме электролита (создающим краевой эффект), зависит как от межэлектродного расстояния, так и от положения детали относительно анода и уровня электролита.

Положение детали в ванне важно при хромировании наружных поверхностей и не влияет на хромирование внутренних цилиндрических поверхностей, если оно производится в правильно сконструированном анодно-катодном устройстве.

Расположение детали глубоко в ванне при еще более глубоко находящемся нижнем крае анода создает наиболее неравномерное распределение тока на детали, так как значительная часть тока проходит через объем электролита над деталью и под ней.

Различная глубина погружения хромируемой детали и отвлекаемые токи

Можно значительно улучшить распределение тока, если верхний край детали расположить непосредственно под уровнем электролита (устраняется отвлечение тока через верхний объем электролита), а нижний край анода, поднять выше нижнего края детали (увеличится сопротивление току, отвлекаемому в нижний объем электролита). При хромировании поверхностей простой формы (цилиндр, плоскость) для достижения наиболее равномерного покрытия необходимо анод расположить параллельно хромируемой поверхности при минимальном межэлектродном расстоянии. Упрощенным вариантом этого, требования является расположение плоских анодов со всех сторон хромируемой цилиндрической детали.

Расположение плоских анодов при хромировании цилиндрической детали

Действие межэлектродного расстояния проявляется особенно сильно при его изменениях в пределах величин, соизмеримых с размерами электродов, и имеет значение для характерных при износостойком хромировании деталей с простым рельефом (цилиндрических и плоских).

Влияние межэлектродного расстояния на равномерность хромирования

Для деталей с развитым рельефом, характерным для защитно-декоративного покрытия, с повышением межэлектродного расстояния улучшается распределение покрытия по рельефной поверхности в соответствии с кроющей способностью электролита.

Возможность практически полного исключения концентрации тока даже на остриях путем расположения их непосредственно под уровнем электролита показана на рисунке.

Концентрация тока на острие хромируемой детали

На следующем рисунке изображены некоторые характерные схемы монтажа при хромировании внутренней и наружной поверхностей деталей.

Использование при хромировании профилирующих анодов

1-экран, 2- газовые пузырьки.

Для равномерного осаждения хрома на внутренних гранях и в углах детали анод должен иметь оттянутые углы (а). При хромировании внешней поверхности для предупреждения образования грубых "пригорелых" осадков хрома на углах детали аноду следует придать форму хромируемой детали (б), а напротив ее углов установить непроводящие ток экраны.

При хромировании деталей, отличающихся сложной формой (пресс-формы, штампы и т.п.), как правило, используют фигурные аноды (в), воспроизводящие очертания хромируемой поверхности.

На рисунке (в) деталь расположена неверно, так как скапливающиеся на нижней поверхности газовые пузырьки нарушают хромирование этой поверхности.

При хромировании внутренней поверхности цилиндра анод помещают внутри соосно с хромируемой поверхностью. Однако в данном случае необходимо иметь в виду, что при слишком маленьком анодно-катодном расстоянии, при высоких плотностях тока и небольшом объеме электролита, заключенного между электродами, происходит сильное насыщение газами его верхних слоев. Вследствие этого, толщина осажденного хрома в верхней части цилиндра получается меньше, чем в нижней. Для предупреждения неравномерного осаждения хрома по высоте длинных цилиндров хромирование следует выполнять в проточном электролите.

Особое значение для понижения краевого эффекта имеет применение защитных катодов и изолирующих экранов. На следующем рисунке приведены некоторые приемы их использования, а также способ устранения краевого эффекта путем изоляции межэлектродного объема от остального электролита и его уменьшение за счет сокращения межэлектродного расстояния.

Приемы уменьшения краевого эффекта при хромировании

а - схема краевого эффекта; б - защитные катоды при местном хромировании вала; в - проволочный защитный катод у края фасонной детали; г - защитный катод у нижнего края цилиндра (верхний край под уровнем электролита); д - схема экранирования вала от влияния фланца и краевого эффекта; е - экранирование нижней части вала (верхняя находится под уровнем электролита); ж - изоляция межэлектродного объема от остального электролита; з - снижение краевого эффекта при уменьшении межэлектродного расстояния.
1 - изоляция; 2 - хромируемая поверхность; 3 - защитный катод

Защитные катоды. Эффективным методом устранения краевого эффекта является применение защитных катодов около участков с повышенной концентрацией тока. Защитный катод - это проводник, соединенный электрически с хромируемой деталью и обычно укрепленный на детали таким образом, чтобы отвлечь от краев хромируемой поверхности на себя избыточный ток. Степень отвлекающего действия защитного катода регулируется его расстоянием от хромируемой поверхности, формой и размерами. Чаще всего защитному катоду придают форму хромируемой поверхности и размещают его на детали так, чтобы он был продолжением этой поверхности (б - г).

При местном хромировании цилиндрических деталей не хромируемые участки, смежные с хромируемыми, закрывают свинцовой или алюминиевой фольгой, которая является защитным катодом, устраняющим утолщение хрома на краях хромируемой поверхности (б). При необходимости усиления действия защитного катода нужно отогнуть его край на 2-5 мм.

С помощью защитных катодов можно достичь высокой равномерности хромового покрытия даже при неблагоприятном расположении детали в ванне. Однако этот метод имеет существенный недостаток, так как при нем дополнительно расходуется ток и хромовый ангидрид на покрытие защитного катода.

Защитные экраны. При регулировании распределения тока на хромируемой поверхности при помощи экранов из электроизоляционных материалов, не расходуется дополнительно ток и хромовый ангидрид. Такой экран представляет собой перегородку на пути тока, увеличивающую местное сопротивление для его прохождения и тем самым ослабляющую плотность тока на данном участке. Но кроме устранения избытка тока, экран может способствовать равномерному распределению тока на детали, у которой хромируемые участки влияют друг на друга. Покрытие изоляцией (экраном) одного участка устраняет его влияние на другой. Например, при хромировании вала с фланцем торцевая поверхность фланца, обращенная к валу, отвлекает от него ток, что ведет к неравномерному покрытию вала около фланца. Это влияние полностью устраняется, если фланец покрыт изоляцией (экраном), как это показано на рисунке (д).

смотрите так же:
Хромирование

Темы форума:
Самостоятельное хромирование


Литература:
Богорад Л.Я. Хромирование. - Л., 1984.
Лайнер В.И. Защитные покрытия металлов. - М., 1974.
Рябой А.Я. Брондз Л.Д. Повышение ресурса авиационных деталей из высокопрочных сталей. - М., 1978.
Салли А. Брэндз Э. Хром. - М., 1971.
Сухотин А.М. Техника борьбы с коррозией. Л., 1978.

При использовании материала этого сайта необходимо устанавливать активные ссылки, видимые для пользователей и поисковых роботов.

© 2006-2009 polirovanie.ru
Отправить сообщение